Coril. 7¥ctlé-- o
LA-UR-78-1427

TITLE: AN IMPLEMENTATION OF THE ACM/SIGGRAPH PROPOSED
GRAPHICS STANDARD IN A MULTISYSTEM ENVIRONMENT

AUTHOR(S): Richard G. Kellner
Theodore N. Reed
Ann V. Solem

SUBMITTED TO: SIGGRAPH '78

By acceptance of this article for publication, the
publisher recognizes the Government’s (license) rights
in any copyright and the Government and lts authorized

representatives have unrestricted right to reproduce in
/ whole or in port sald article under any copyright
(secured by the publisher.

publisher identify this article as work performed under

The Los Alamos Scientific Laboratory requests that the
> the auspices of the USERDA.

MASTER

NOTICE
This mpott was prepared & an accounl of work
wontoted by the Unied Simes Government. Nevher the
Untied Statrs now vhe Unied Staues Depariman) of

I S ﬂlﬂmﬂs Energy, not any of thet employees, ot sny of dett
ot o thais loy makae

Wy

Sy warianty, saptewm of bmplitd, of amumes any legal

scientitic laboratory iy ey o ey coar
of the University of California e ey et v, o

LOS ALAMOS, NEW MEXICO B7544

An Aili tive Acthi E 10 tunity Empl
n Atlirmotive Action/Eaual Opportunily Emelayer SUSTRIBUTION OF TLIS DOCUMENT IS UNLIMITED
\

Loy N ., ENERGY RESEARCH AND
S DEVELUPMENT ADMINISTRATION
CONTRACT W-T105.ENG. 48

Ll;
Pt N #00 UNITED STATES \ :

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

AN IMPLEMENTATION OF THE ACM/SIGGRAPH PROPOSED GRAPHICS STANDARD
~ IN A MULTISYSTEM ENVIRONMENT

Richard G. Kellager !
Theodore N. Rzed
Ann V. Solem .
Los Alamos Scientific Laboratory
P.0. Box 1663, MS-272
Los Alamos, New Mexico 87545

ABSTRACT

Los Alamos Scientific Laboratory (LASL) bas
inmplemented a graphics system designed to support
one user interface for all graphics devices in all
operating environments at LASL. The Common Graph-
ics System (CGS) will support Level One of the
graphics standard proposed by the ACM/SIGGRAPH
Graphic Standards Planning Comnittee,

CGS is available in six operating environ-
ments of two different word lengths and supports
four types of graphics devices. It can ge-erate a
pseudodevice file that may be postprocessed and
edited for a particular graphics device, or it can
generoate device-specific graphics output directly.
Program overlaying and dynamic buffer sharing are
also supported.

CGS is structured to isolate operating system
dependencies and graphics device dependencies. It
is written in the RATFOR (RATional FORtran)
language, which supports control flow statements
and macro expansion. CGS is maintained as a sin-
gle source program from which each version can be
extracted sutomatically.

Key Words and Phrases:
dards, computer graphics,
graphics, pseudodevice.

portability, stan-
device-independent

CR Categories: 4.22, 8.2
1. INTRODUCTION

Since 1957, the Los Alamos Scientific Labora-
tory (LASL) has been involved in computer graph-
ics, pioneering work in color computcr output mi-
crofilm and other areas. Currently, LASL has nine
large-scale computers, several hundred Tektronix
4010-series graphics terminals, four computer oute
put microfilm recorders, an Evans and Sutherland
Picture System 2 graphics system, and pumerous
small computers and other graphics equipment. The
computers are run 24 hours per day, 7 days per
week, with a mixture of jobs, including ones that
may consume all the avallable resources of a large
computer for hours.

The gradual development of graphics software
at LASL has resulted in a large collection of dif-
ferent capabilities and ditterent user interfaces

for each operating system and graphics device.
Software maintenance, application program mainte~
nance aud conversion, and user education have re-
quired extensive effort that could be reduced by
one unified graphics system. Because existing
systems, such as GINO-F [4] and GPGS {3], were not
suitable for our applications, we designed and inm-
plemented cur own,

Late in 1976, we began implementation of the
Common Graphics System (CCS). By.late 1977, CGS
was operational in six operating environments, on
computers of two different word lengths, and was
supporting four types of graphics devices, Each
operating environment differs in computer
hardware, operating systems, and compiler subsys-
tems, yct the graphics interface provided by CGS
is identical.

2. CAPABILITIES

CGS was pattern:d after the ACM/S1GGRAPH pro-
posed standard for computer graphics software [V}.
The proposed standard has four levels of capabili-
ty: basic, buffered, interactive, and complete.
The initial goal of CGS was to implement the basic
level for the graphics devices at LASL. Subse-
cuvert versions are planned to support the buffered
g ractive levels, with a long-term objective
ot s.pgorting all four levels.

Included in the basic level of support are
four classes of functional capability: output
primitives and primitive attributes; viewing
transformatlons for both two and three dimensfons;
control functions necessary to use the system; and
non-retuined segments. The subsequent levels of
support will include: rertained segwents; dynamic
segment attributes; input primitives; and {mag2
transforms.

Additional capabilities are necessary to sup-
port the more important LASL spplication programs.
These are nongraphic control capabilities that
must be provided as part of the graphics system.
These are described below. The appesdix contaios
a list of these control functions and the proposed
SIGGRAPH control functions with which they io-
teract.

2.1 Progtam Overlaying

To allow application programs to overlay €G3

routines with the application program, we have
provided two control functions.

a. A function to force global varirbles to be
allocated in the non-overlayed portion of
sepory.

b. A function to establish or sever linkage to a
graphics device driver residing in an over-
lay. With our implementation of CGCS and our
operating environments, it is necessary for
the application program to establish linkage
to a graphics device driver upon entering an
overlay and to sever linkage upon exiting the
overlay. No view surface may be selected un-
less it is associated with a graphics device
that is lioked.

2.2 Dyonamic Buffer Aliocation

Application programs must be able to allocate
graphics buffer space dynamically to make the
memory space available to the program when it is
not being used for graphics. Two functions have
been provided for this purpose.

a. A function to sssign a buffer for use by a
view surface. The buffer is unavailable for
use by the application program when it is as-
signed to the view surface.

b. A functicn to unassign a buffer. This forces
the cn-tents of the buffer to be written to
disk or to an on-line graphics deovice. The
view surface cunnot be selected when a buffer
is unassigned. The buffer becomes available
for us. by the application program.

2.3 Additional Goals

In addition to the above capabilities, the
following were goals guiding the design and imple-
mantation of CGS.

a. To provide sn identical interface to each of
the graphics device drivers.

b. To load only the graphics device drivers re-
quested by the application program.

c¢. To maintain the graphics routinec and all the
grasphics device drivers in the same object
library.

d. To support a pseudodevice (i.e., a device-
independent graphica file) [2] that could be
postprocessed to any graphics device. This
allows graphics to be previewed and a2dited
before specifying a graphics device for final
output.

3. STRUCTURE
The structure of CGS (Fig. 1) was affected by

the above functional requirements and design
goals.

3.1 Device-independent Graphica

This module supports the functions described

in Level One of the SICGRAPH proposal [1]. These
routines generate graphics commands in & common

USER APPLICATION PROGRAMS

% &

SC-4020 HIGH LEVEL
PLOTTING PLOTTING
PACKAGE PACKAGES

|
5 J
COMMON GRAPHICS SYSTEM

DEVICE INDEPENDENT
GRAPHICS

OSTPROCESSOR,~

DEVICE SELECTION
AND CONTROL

DRIVER DRIVER | DRIVER

OTHER
DEVICES

PSEUDO DEVICE FRBO TEKTRONIX
184 COoM TERMINALS

Fig. 1. Structure of CGS.

format for all the graphics device drivers, in-
cluding the pseudodevice, and interface directly
to the device selection rontrol module. The world
coordinates are processed by the viewing transform
into normalized device coordinates in the range of
the current normalized device coordinate space.
They are then directed to the device selection
control module.

3.2 Multiple View Surfaces

CGS supports ~ultiple view surfaces for wmul-
tiple devices, 1. luding multiple view surfaces
for a siogle device, 25 provided for in the SIG-
GRAPH proposal. Other graphics packages at LASL
have allowed spplications to generate a movie and
slides for the same device at the same time. We
have generalized this capability to generate in-
dependent streams of graphics for various graphic
devices, just as a program can have sany number of
independent input or output f{iles for nongraphics
devices.

3.3 Device Driver Linkage

All the graphics primitive routines c¢all a
single module, ‘*he device selection control
module, and pass the graphics command in a common
fcrmat gimilar to the pseudodevice format [2].
This module calls the linked device drivers, pass-
ing the pseudodevice command along. The applica=
tion program miust name all the device drivers that
may be needed, and only those will be loaded.
This is necessary because all of our loaders are
static overlay loaders. The drivers may all re-
side in memory at the same time, or the applica-

- rodtines.

ticn program may overlay drivers with ther
Dirivers not in meadry must be unlinked;
dr.vers in memory may be linked or unlinked.
Since all device drivers may be in memory simul-
taneously, all device driver routines have unique

naomes.
3.4 Graphics Device Drivers

Each device driver generates device-specific
information. It transforms the normalized device
coordinates to the coordinate space of the graph-
ics device, Each device driver checks for all
view surfaces that are assigned to it and sends
the plotting information to each view surface that
is currently selected. This is accomplished by
maintaining a separate workspace containing vari-
ables and working storage for each view surface.
Thus, "output-only" device drivers write to a
separate file on disk for each selected view sur-
face. This capability could also be used to drive
several terminals of the same type if the operat-
ing environment can support multiple terminals per
job.

4. IMPLEMENTATION

Important implementation considerations were:
vortability; maintainability; compatibility with
an existing plotting package; and a modular imple-
mentation.

4.1 Portability

The biggest problem in portability was caused
by the lack of any standards in system interfaces.
Capabilities such as logical and shifting opera-
tions, bit and byte packing, character set conver-
sion, in-core formatted data conversion, and job
and system inquiries, are system functions that
arc sufficiently well understood to warrant some
standardization across operating environmeats. We
developed one system-independent interface to the
operating environments. To move to a new operat-
ing environment, only the routines defining that
interface need be rewritten.

In addition to the system functions mentioned
above, we defined a system-independent I/0 inter-
face for creating a file; opening and closing a
path from the progcam to a file or to an on-line
praphics device; disposing a file to its ultimate
destination, such as an off-line graphic- device;
and reading and writing any number of bits.

At LASL we are required to generate s graph-
ics file in one operating environment and read it
in another operating environment. In order teo
eliminate conversions between these environments,
all graphics files have the same formst. Each
file has an index indicating where physical record
marks are to be inserted, because some graphics
devices require a particular structure to the phy-
sical records or to an input graphics tape. The
index also records frame addresses to facilitate
editing and postprocessing.

4.2 Majntainabilicy
CC5 exists as one master source program, from

which & version for each operating environment can
be extracted, This eusures uniformity in the

. dodevice

graphics system in all operating environments.

Two types of preprocessing are vused to ex-
tract each version from the master source.

a. All system-dependent and
quantities, such as
graphics device command size, and ocutput
buffer size, are set with macros. Prepro-
cessing with the right set of macro definj-
tions causes all the quantities to be applied
throughout the source program.

device-dependent
computer word tize,

b. The modules that define the systes-
independent interface must be different for
each operating environment. Those modules
that have been optimized with in-line logical
and shift operations also have to be dif-
ferent. This conditional compilation is
achieved by flagging each system-dependent
statement with a system ID, and preprocessing
to delete all lines that do aot belong to the
desired version.

We use the RATional FORtran (RATFOR) language
from Bell Laboratories {5,6). The RATFOR prepro-
cessor outputs ANSI standard FORTRAN. It supports
control flow statements, such as JF/ELSE and
WHILE, and also has a limited macro capability.

The project libLrarian generates the graphics
system for all operating environments~-compiling;
building libraries and utilities; testing; saving
all listings on microfiche; keeping records;
releasing the new libraries and utilities for pub-
lic use; and keeping backup copies. The librarian
uses procedure files and macros so that each major
step can be easily performed.

"4.3 SC-4020 Emulation

There is a tremendous investment at LASL in
application programs that produce graphics output
for the SC-4020 microfilm recorder. Conversion of
these programs to run under CGS had to be mini~
mized, so we rewrote the SC-4020 primitive
routines to call the CGS primitives. Existing
high-level routines and application programs have
gained portability across operating environments
and graphics devices with almost no conversion of
the graphics portions of their codes.

4.4 Modular Implementation

OQur software implementation called for in-
stalling a minioum version of CGS, suitable for
use by production programs in all opersting en-
vironments. The first release of CGS was a two-
dimensional system, which supported only the pseu-
file, and included the SC-4020 emulation
routines. A postprocessor supporting several of
our graphics devices was written utilizing exist-
ing Braphics software. Once operatiopal, CG$ was
optimized and enhanced uniformly in all opecating
environments and implementation of device drivers
suitable for use directly with CGS wis begun.

5. CONCLUSIONS
Our initial objective was to implement

device-indenendent graphics in a portable fashion
to support existing application programs in nev

and existing operating environments at LASL. The
conversion of exi1sting high-level graphics
routines to use CGS brought widespread availabjili-
ty quickly and gave many existing application pro-
grams access to 2 variety of graphizs devices and
operating environments. The resulting user feed-
back has been valuable, especially in the areas of
portable software and ascertaining user needs for
improved high-level graphics.

Writing the system with portability in waind
and then looking at efficiency has resuited in
several modifications to our portability tech-
niques, primarily to improve efficiency.

Level One of the SIGGRAPH proposal has been
sufficient to support the majority of our existing
applications. The additional device driver con-
trol functions we have provided have enabled CGS
to support several of our larger, more important
applications. It will soon be necessary to sup-
port a Level Three implementation to provide in-
teractive graphics using CGS.

As of early 1978, four and one-half man-years
have been expended in the development, documenta-
tion, and maintenance of a partial Level One im-
plementation of the SIGGRAPH proposal in six
operating environment:. This also includes the
conversion of 9000 lines of high-level graphics
routines and many hours of user education and con-
sulting.

6. APPENDIX
6.1 Initialization and Termination
6.1.1 ALLOCATE-GLOBALS {)

This function allocates CGS global
variables. The allocation occurs wherever
the routine is loaded. This function may
be called anytime.

Errors: None.

6.1.2 INITIALIZE-CORE (LEVEL)

This function initializes the core.
Except for ALLOCATE-GLOBALS, it must be
the first call made.

Errors:
1. CGS was already initialized.
2. The specified level is not supported.

6.1.3 TERMINATE-CORE ()
This function releases all resources
being used by CGS.

Errors:

1. CGS was not initjalized,

2. A view surface has not been terminat-
ed.

3. A view surface has not been closed.

6.2 Device Selection and Control

OPEN-VIEW-SURFACE (SURFACE-NAME,
BUFFER~SIZE)

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

This function associates a buffer
with the specified view surface.

Errors:
1. The view surface was already open.

CLOSE-VIEW-SURFACE (SURFACE-NAME)

This function disassociates a buffer
from the specified view surface,

Errors:
1. The view surface was not opened.
2. The view surface was not deselected.

LINK-DEVICE-DRIVER (DEVICE-NAME,
DRIVER-ADDRESS)

This function generates the :ink to
the specified device driver in the device
selection module.

Errors:
1. The device driver was already linked.
2. VUnrecognized device name.

UNLINK-DEVICE-DRIVER (DEVICE-NAME)

This function eliminates the link to
the specified device driver in the device
selection module.

Errors:

1. The device driver was not linked.

2. Unrecognized device name.

3. A view surface assigned to the device ’
was not deselected,

INITIALIZE-VIEW-SURFACE (SURFACE-NAME,
DEVICE-NAME, DEVICE-OPTIONS)

This function associates a view sur-
face with a device driver. The device op-
tions are used to select specific device
capabilities. These options are used to
initialize the view surface.

Errors:
1. The view surface was already initial-
ized.

2. \Unrecognized device name.

3. The view surface was not opened.

4. The associated device driver was not
linked.

TERMINATE-VIEW-SURFACE (SURFACE-NAME)

This function terminates the speci-
fied view surface.

Errora:

1. The view surface was not initiaslized.

2. The view surface was not deselected.

3. The view surface was not opened.

4, The associated device driver was not
linked.

SELECT-VIEW-SURFACE (SURFACF-NAME)
This function selects the specified

view surface for subsequent graphic out=
put.,

Errors:

1. The view surface was already selected.

2. The view surface was not initialized.

3. The view surface was not opened,

4. The associated device driver was not
linked.

5. A segment is open.

6.2.8 DESELECT-VIEW-SURFACE (SURFACE~NAME)

This function deselects the view sur-
face.

Errors:
1. The view surface was not selected.
2. A seguent is open.

ACKNOWLEDGMENTS

We would like to acknowledge Raymond Elliott
of LASL for the support and encouragement he gave
this project, as well as his ma-y comments and
suggestions. We would also like to thank Jeanne
Hurford of LASL for word processing support.

We also acknowledge the joint effort concern-
ing graphics s.andardization between Sandia
Laboratories at Albuquerque, the Air Force Weapons
Laboratory at Kirt.and Air Force Base, and LASL.

We are especially indebted to the wmany
nembers of the ACM/SIGGRAPH Graphic 5tandards
Planning Committee. Their report sets forth the
first real hope that a standard for computer
graphics software will b established.

REFERENCES

1. ACM. Status Report cf the Graphic Standards
Planning Committee of ACHM/SIGGRAPH. Computer
Graphics 11, 3, Fall 1977.

2. Conley, B., et al. Basic Graphics Package In-
termediate File Format. LASL internal document,
March 1978.

3. General Purpose Graphics System. Katbolieke
Universiteit, Nijmegin, The Netherlands, 1975.

4. GINO-F User Manual. Computer Aided Design
Centre, Cambridge, England, 1974.

5. Kernighan, B.W. RATFOR - A Preprocessor for s
Rational FORTRAN. Bell Laboratories, Murray Hill,
NJ.

6. Kernighan, B.W., and Plauger, P.J. Software
Toois. Addicon-Wesley, Reading, MA, 1976.

